
1 Declarative Programming
Programming languages are divided into different paradigms. Programs writ-
ten in traditional languages like Pascal or C are imperative programs that
contain instructions to mutate state. Variables in such languages point to
memory locations and programmers can modify the contents of variables us-
ing assignments. An imperative program contains commands that describe
how to solve a particular class of problems by describing in detail the steps
that are necessary to find a solution.

By contrast, declarative programs describe a particular class of problems
itself. The task to find a solution is left to the language implementation.
Declarative programmers are equipped with tools that allow them to ab-
stract from details of the implementation and concentrate on details of the
problem.

Hiding implementation details can be considered a handicap for program-
mers because access to low-level details provides a high degree of flexibil-
ity. However, a lot of flexibility implies a lot of potential for errors, and,
more importantly, less potential for abstraction. For example, we can write
more flexible programs using assembly language than using C. Yet, writing
large software products solely in assembly language is usually considered
impractical. Programming languages like Pascal or C limit the flexibility of
programmers, e.g., by prescribing specific control structures for loops and
conditional branches. This limitation increases the potential of abstraction.
Structured programs are easier to read and write and, hence, large programs
are easier to maintain if they are written in a structured way. Declarative
programming is another step in this direction.1

The remainder of this chapter describes those features of declarative pro-
gramming that are preliminary for the developments in this book, tools it
provides for programmers to structure their code, and concepts that allow
writing programs at a higher level of abstraction. We start in Section 1.1
with important concepts found in functional programming languages, viz.,
polymorphic typing of higher-order functions, demand-driven evaluation,
and type-based overloading. Section ?? describes essential features of logic
programming, viz., non-determinism, unknown values and built-in search

1Other steps towards a higher level of abstraction have been modularization and object orien-
tation which we do not discuss here.

1

1 Declarative Programming

and the interaction of these features with those described before. Finally,
we show how so called constraint programming significantly improves the
problem solving capabilities for specific problem domains in Section ??.

1.1 Functional programming

While running an imperative program means to execute commands, running
a functional program means to evaluate expressions.

Functions in a functional program are functions in a mathematical sense:
the result of a function call depends only on the values of the arguments.
Functions in imperative programming languages may have access to vari-
ables other than their arguments and the result of such a "function" may also
depend on those variables. Moreover, the values of such variables may be
changed after the function call, thus, the meaning of a function call is not
solely determined by the result it returns. Because of such side effects, the
meaning of an imperative program may be different depending on the order
in which function calls are executed.

An important aspect of functional programs is that they do not have side
effects and, hence, the result of evaluating an expression is determined only
by the parts of the expression – not by evaluation order. As a consequence,
functional programs can be evaluated with different evaluation strategies,
e.g., demand-driven evaluation. We discuss how demand-driven, so called
lazy evaluation can increase the potential for abstraction in Subsection 1.1.2.

Beforehand, we discuss another concept found in functional languages
that can increase the potential for abstraction: type polymorphism. It pro-
vides a mechanism for code reuse that is especially powerful in combination
with higher-order functions: in a functional program functions can be argu-
ments and results of other functions and can be manipulated just like data.
We discuss these concepts in detail in Subsection 1.1.1.

Polymorphic typing can be combined with class-based overloading to de-
fine similar operations on different types. Overloading of type constructors
rather than types is another powerful means for abstraction as we discuss in
Subsection 1.1.3.

We can write purely functional programs in an imperative programming
language by simply avoiding the use of side effects. The aspects sketched
above, however, cannot be transferred as easily to imperative programming
languages. In the remainder of this section we discuss each of these aspects
in detail, focusing on the programmers potential to increase the level of
abstraction.

2

1.1 Functional programming

1.1.1 Type polymorphism and higher-order functions
In Chapter ?? we have seen the definition of a function size that computes
the size of a string. In Haskell strings are represented as lists of characters
and we could define similar functions for computing the length of a list of
numbers or the length of a list of Boolean values. The definition of such
length functions is independent of the type of list elements. Instead of re-
peating the same definition for different types we can define the function
length once with a type that leaves the type of list elements unspecified:

length :: [a] → Int
length [] = 0
length (: l) = 1 + length l

The type a used as argument to the list type constructor [] represents an
arbitrary type. There are infinitely many types for lists that we can pass to
length, e.g., [Int], String, [[Bool]] to name a few.

Type polymorphism allows us to use type variables that represent arbitrary
types, which helps to make defined functions more generally applicable.

Type polymorphism is especially useful in combination with another fea-
ture of functional programming languages: higher-order functions. Func-
tions in a functional program can not only map data to data but may also
take functions as arguments or return them as result. Probably the simplest
example of a higher-order function is the infix operator $ for function appli-
cation:

($) :: (a → b) → a → b
f $ x = f x

At first sight, this operator seems dispensable, because we can always write
f x instead of f $ x. However, it is often useful to avoid parenthesis because
we can write f $ g $ h x instead of f (g (h x)). Another useful operator is
function composition:

(◦) :: (b → c) → (a → b) → (a → c)
f ◦ g = λx → f (g x)

This definition uses a lambda abstraction that denotes an anonymous func-
tion. The operator for function composition is a function that takes two func-
tions as arguments and yields a function as result. Lambda abstractions have
the form λx → e where x is a variable and e is an arbitrary expression. The
variable x is the argument and the expression e is the body of the anonymous
function. The body may itself be a function and the notation λx y z → e

3

1 Declarative Programming

is short hand for λx → λy → λz → e. While the first of these lambda ab-
stractions looks like a function with three arguments, the second looks like a
function that yields a function that yields a function. In Haskell, there is no
difference between the two. A function that takes many arguments is a func-
tion that takes one argument and yields a function that takes the remaining
arguments. Representing functions like this is called currying.2

There are a number of predefined higher-order functions for list process-
ing. In order to get a feeling for the abstraction facilities they provide, we
discuss a few of them here.

The predefined function map applies a given function to every element of
a given list:

map :: (a → b) → [a] → [b]
map f [] = []
map f (x : xs) = f x : map f xs

If the given list is empty, then the result is also the empty list. If it contains at
least the element x in front of an arbitrary list xs of remaining elements, then
the result of calling map is a non-empty list where the first element is com-
puted using the given function f and the remaining elements are processed
recursively. The type signature of map specifies that

• the argument type of the given function and the element type of the
given list and

• the result type of the given function and the element type of the result
list

must be equal. For example, map length ["Haskell", "Curry"] is a valid
application of map because the a in the type signature of map can be instanti-
ated with String which is defined as [Char] and matches the argument type
[a] of length. The type b is instantiated with Int and, therefore, the returned
list has the type [Int]. The application map length [7, 5] would be rejected
by the type checker because the argument type [a] of length does not match
the type Int of the elements of the given list.

The type signature is a partial documentation for the function map because
we get an idea of what map does whithout looking at its implementation. If
we do not provide the type signature, then type inference deduces it auto-
matically from the implementation.

Another predefined function on lists is dropWhile that takes a predicate,
i.e., a function with result type Bool, and a list and drops elements from the
list as long as they satisfy the given predicate.

2The term currying is named after the american mathematician and logician Haskell B. Curry.

4

1.1 Functional programming

dropWhile :: (a → Bool) → [a] → [a]
dropWhile p [] = []
dropWhile p (x : xs) = if p x then dropWhile p xs else x : xs

The result of dropWhile is the longest suffix of the given list that is either
empty or starts with an element that does not satisfy the given predicate.
We can instantiate the type variable a in the signature of dropWhile with
many different types. For example, the function dropWhile isSpace uses a
predefined function isSpace :: Char → Bool to remove preceding spaces from
a string, dropWhile (<10) removes a prefix of numbers that are less than
10 from a given list, and dropWhile ((<10) ◦ length) drops short lists from
a given list of lists, e.g., a list of strings. Both functions are defined as so
called partial application of the function dropWhile to a single argument –
an interesting programming style made possible by currying.

Polymorphic higher-order functions allow to implement recurring idioms
independently of concrete types and to reuse such an implementation on
many different concrete types.

1.1.2 Lazy evaluation

With lazy evaluation arguments of functions are only computed as much as
necessary to compute the result of a function call. Parts of the arguments
that are not needed to compute a result are not demanded and may contain
divergent and/or expensive computations. For example, we can compute
the length of a list without demanding the list elements. In a programming
language with lazy evaluation like Haskell we can compute the result of the
following call to the length function:

length [⊥, fibonacci 100]

Neither the diverging computation ⊥ nor the possibly expensive computa-
tion fibonacci 100 are evaluated to compute the result 2.

This example demonstrates that lazy evaluation can be faster than eager
evaluation because unnecessary computations are skipped. Lazy compu-
tations may also use less memory when different functions are composed
sequentially:

do contents ← readFile "in.txt"
writeFile "out.txt" ◦ concat ◦map addSpace $ contents

where addSpace c | c ≡ ’.’ = ". "
| otherwise = [c]

5

1 Declarative Programming

This program reads the contents of a file in.txt, adds an additional space
character after each period, and writes the result to the file out.txt. The
function concat :: [[a]] → [a] concatenates a given list of lists into a single
list. In an eager language, the functions map addSpace and concat would
both evaluate their arguments completely before returning any result. With
lazy evaluation, these functions produce parts of their output from partially
known input. As a consequence, the above program runs in constant space
and can be applied to gigabytes of input. It does not store the complete file
in.txt in memory at any time.

In a lazy language, we can build complex functions from simple parts that
communicate via intermediate data structures without sacrificing memory ef-
ficiency. The simple parts may be reused to form other combinations which
increases the modularity of our code.

Infinite data structures

With lazy evaluation we can not only handle large data efficiently, we can
even handle unbounded, i.e., potentially infinite data. For example, we can
compute an approximation of the square root of a number x as follows:

sqrt :: Float → Float
sqrt x = head ◦ dropWhile inaccurate ◦ iterate next $ x

where inaccurate y = abs (x− y ∗ y) > 0.00001
next y = (y + x / y) / 2

With lazy evaluation we can split the task of generating an accurate approx-
imation into two sub tasks:

1. generating an unbounded number of increasingly accurate approxima-
tions using Newton’s formula and

2. selecting a sufficiently accurate one.

Approximations that are more accurate than the one we select are not com-
puted by the function sqrt. In this example we use the function iterate to
generate approximations and dropWhile to dismiss inaccurate ones. If we
decide to use a different criterion for selecting an appropriate approxima-
tion, e.g., the difference of subsequent approximations, then we only need
to change the part that selects an approximation. The part of the algorithm
that computes them can be reused without change. Again, lazy evaluation
promotes modularity and code reuse.

In order to see another aspect of lazy evaluation we take a closer look at
the definition of the function iterate:

6

1.1 Functional programming

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

Conceptually, the call iterate f x yields the infinite list

[x, f x, f (f x), f (f (f x)), ...

The elements of this list are only computed if they are demanded by the
surrounding computation because lazy evaluation is non-strict. Although
the argument x is duplicated in the right-hand side of iterate it is evaluated
at most once because lazy evaluation is sharing the values that are bound
to variables once they are computed. If we call sqrt (fibonacci 100) then
the call fibonacci 100 is only evaluated once, although it is duplicated by the
definition of iterate.

Sharing of sub computations ensures that lazy evaluation does not per-
form more steps than a corresponding eager evaluation because computa-
tions bound to duplicated variables are performed only once even if they
are demanded after they are duplicated.

1.1.3 Class-based overloading
Using type polymorphism as described in Subsection 1.1.1 we can define
functions that can be applied to values of many different types. This is often
useful but sometimes insufficient. Polymorphic functions are agnostic about
those values that are represented by type variables in the type signature of
the function. For example, the length function behaves identically for every
instantiation for the element type of the input list. It cannot treat specific
element types different from others.

While this is a valuable information about the length function, we some-
times want to define a function that works for different types but can still
take different instantiations of the polymorphic arguments into account. For
example, it would be useful to have an equality test that works for many
types. However, the type

(≡) :: a → a → Bool

would be a too general type for an equality predicate ≡. It requires that we
can compare arbitrary types for equality, including functional types which
might be difficult or undecidable.

Class-based overloading provides a mechanism to give functions like ≡ a
reasonable type. We can define a type class that represents all types that
support an equality predicate as follows:

7

1 Declarative Programming

class Eq a where
(≡) :: a → a → Bool

This definition defines a type class Eq that can be seen as a predicate on types
in the sense that the class constraint Eq a implies that the type a supports the
equality predicate ≡. After the above declaration, the function ≡ has the
following type:

(≡) :: Eq a ⇒ a → a → Bool

and we can define other functions based on this predicate that inherit the
class constraint:

()≡) :: Eq a ⇒ a → a → Bool
x)≡ y = ¬ (x ≡ y)
elem :: Eq a ⇒ a → [a] → Bool
x ∈ [] = False
x ∈ (y : ys) = x ≡ y ∨ x ∈ ys

Here, the notation x ∈ xs is syntactic sugar for elem x xs, ¬ denotes negation
and ∨ disjunction on Boolean values.

In order to provide implementations of an equality check for specific types
we can instantiate the Eq class for them. For example, an Eq instance for
Booleans can be defined as follows.

instance Eq Bool where
False ≡ False = True
True ≡ True = True

≡ = False

Even polymorphic types can be given an Eq instance, if appropriate instances
are available for the polymorphic components. For example, lists can be
compared if their elements can.

instance Eq a ⇒ Eq [a] where
[] ≡ [] = True
(x : xs) ≡ (y : ys) = x ≡ y ∧ xs ≡ ys

≡ = False

Note the class constraint Eq a in the instance declaration for Eq [a]. The
first occurrence of ≡ in the second rule of the definition of ≡ for lists is
the equality predicate for values of type a while the second occurrence is a
recursive call to the equality predicate for lists.

8

1.1 Functional programming

Although programmers are free to provide whatever instance declarations
they choose, type-class instances are often expected to satisfy certain laws.
For example, every definition of ≡ should be an equivalence relation—re-
flexive, symmetric and transitive—to aid reasoning about programs that use
≡. More specifically, the following properties are usually associated with an
equality predicate.

x ≡ x
x ≡ y ⇒ y ≡ x
x ≡ y ∧ y ≡ z ⇒ x ≡ z

Defining an Eq instance where ≡ is no equivalence relation can result in
highly unintuitive program behaviour. For example, the elem function de-
fined above relies on reflexivity of ≡. Using elem with a non-reflexive Eq
instance is very likely to be confusing. The inclined reader may check that
the definition of ≡ for Booleans given above is an equivalence relation and
that the Eq instance for lists also satisfies the corresponding laws if the in-
stance for the list elements does.

Class-based overloading provides a mechanism to implement functions
that can operate on different types differently. This allows to implement func-
tions like elem that are not fully polymorphic but can still be applied to values
of many different types. This increases the possibility of code reuse because
functions with similar (but not identical) behaviour on different types can
be implemented once and reused for every suitable type instead of being
implemented again for every different type.

Overloading type constructors

An interesting variation on the ideas discussed in this section are so called
type constructor classes. In Haskell, polymorphic type variables can not only
abstract from types but also from type constructors. In combination with
class-based overloading, this provides a powerful mechanism for abstraction.

Reconsider the function map :: (a → b) → [a] → [b] defined in Sub-
section 1.1.1 which takes a polymorphic function and applies it to every
element of a given list. Such functionality is not only useful for lists. A
similar operation can be implemented for other data types too. In order to
abstract from the data type whose elements are modified, we can use a type
variable to represent the corresponding type constructor.

In Haskell, types that support a map operation are called functors. The cor-
responding type class abstracts over the type constructor of such types and
defines an operation fmap that is a generalised version of the map function
for lists.

9

1 Declarative Programming

class Functor f where
fmap :: (a → b) → f a → f b

Like the Eq class, the type class Functor has a set of associated laws that are
usually expected to hold for definitions of fmap:

fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

Let us check whether the following Functor instance for lists satisfies these
laws.

instance Functor [] where
fmap = map

We can prove the first law by induction over the list structure. The base case
considers the empty list:

map id []
≡ { definition of map }

[]
≡ { definition of id }

id []

The induction step deals with an arbitrary non-empty list:

map id (x : xs)
≡ { definition of map }

id x : map id xs
≡ { definition of id }

x : map id xs
≡ { induction hypothesis }

x : id xs
≡ { definition of id (twice) }

id (x : xs)

We conclude map id ≡ id, hence, the Functor instance for lists satisfies the
first functor law. The second law can be verified similarly.

As an example for a different data type that also supports a map operation
consider the following definition of binary leaf trees3.

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)
3Binary leaf trees are binary trees that store values in their leaves.

10

1.1 Functional programming

A binary leaf tree is either empty, a leaf storing an arbitrary element, or
an inner node with left and right sub trees. We can apply a polymorphic
function to every element stored in a leaf using fmap:

instance Functor Tree where
fmap Empty = Empty
fmap f (Leaf x) = Leaf (f x)
fmap f (Fork l r) = Fork (fmap f l) (fmap f r)

The proof that this definition of fmap satisfies the functor laws is left as an ex-
ercise. More interesting is the observation that we can now define non-trivial
functions that can be applied to both lists and trees. For example, the func-
tion fmap (length ◦ dropWhile isSpace) can be used to map a value of type
[String] to a value of type [Int] and also to map a value of type Tree String
to a value of type Tree Int.

The type class Functor can not only be instantiated by polymorphic data
types. The partially applied type constructor → for function types is also an
instance of Functor:

instance Functor (a →) where
fmap = (◦)

For f ≡ (a →) the function fmap has the following type.

fmap :: (b → c) → (a →) b → (a →) c

If we rewrite this type using the more conventional infix notation for → we
obtain the type (b → c) → (a → b) → (a → c) which is exactly the type
of the function composition operator (◦) defined in Subsection 1.1.1. It
is tempting to make use of this coincidence and define the above Functor
instance without further ado. However, we should check the functor laws
in order to gain confidence in this definition. The proofs can be found in
Appendix A.1.

Type constructor classes provide powerful means to overload functions.
This results in increased potential for code reuse – sometimes to a surpris-
ing extend. For example, we can implement an instance of the Functor type
class for type constructors like (a →) where we would not expect such possi-
bility at first sight. The following subsection presents another type class that
can be instantiated for many different types leading to a variety of different
usage scenarios that can share identical syntax.

11

1 Declarative Programming

Monads

Monads are a very important abstraction mechanism in Haskell – so impor-
tant that Haskell provides special syntax to write monadic code. Besides
syntax, however, monads are nothing special but instances of an ordinary
type class.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Like functors, monads are unary type constructors. The return function con-
structs a monadic value of type m a from a non-monadic value of type a.
The function >>=, pronounced bind, takes a monadic action of type m a and
a function that maps the wrapped value to another monadic action of type
m b. The result of applying >>= is a combined monadic action of type m b.

The first monad that programmers come across when learning Haskell is
often the IO monad and in fact, a clear separation of pure computations
without side effects and input/output operations that incorporate external
state was the main reason to add monads to Haskell. In Haskell, functions
that interact with the outside world return their results in the IO monad,
i.e., their result type is wrapped in the type constructor IO. Such functions
are often called IO actions to emphasise their imperative nature and distin-
guish them from pure functions. There are predefined IO actions getChar
and putChar that read one character from standard input and write one to
standard output respectively.

getChar :: IO Char
putChar :: Char → IO ()

The IO action putChar has no meaningful result but is only used for its side
effect. Therefore, it returns the value () which is the only value of type ().

We can use these simple IO actions to demonstrate how to write more
complex monadic actions using the functions provided by the type class
Monad. For example, we can use >>= to sequence the actions that read and
write one character:

copyChar :: IO ()
copyChar = getChar >>= λc → putChar c

This combined action will read one character from standard input and di-
rectly write it back to standard output, when it is executed. It can be written
more conveniently using Haskell’s do-notation as follows.

12

1.1 Functional programming

copyChar :: IO ()
copyChar = do c ← getChar

putChar c

In general, do x ← a; f x is syntactic sugar for a >>= λx → f x and arbitrarily
many nested calls to >>= can be chained like this in the lines of a do-block.
The imperative flavour of the special syntax for monadic code highlights
the historical importance of input/output for the development of monads in
Haskell.

It turns out, however, that monads can do much more than just sequence
input/output operations.

For example, we can define a Monad instance for lists and use do-notation
to elegantly construct complex lists from simple ones.

instance Monad [] where
return x = [x]
l >>= f = concat (map f l)

The return function for lists yields a singleton list and the >>= function maps
the given function on every element of the given list and concatenates all
lists in the resulting list of lists. We can employ this instance to compute a
list of pairs from all elements in given lists.

pair :: Monad m ⇒ m a → m b → m (a, b)
pair xs ys = do x ← xs

y ← ys
return (x, y)

For example, the call pair [0, 1] [True, False] yields a list of four pairs, viz.,
[(0, True), (0, False), (1, True), (1, False)]. We can write the function pair
without using the monad operations4 but the definition with do-notation
is arguably more readable.

The story does not end here. The data type for binary leaf trees also has a
natural Monad instance:

instance Monad Tree where
return = Leaf
t >>= f = mergeTrees (fmap f t)

This instance is similar to the Monad instance for lists. It uses fmap instead
of map and relies on a function mergeTrees that computes a single tree from
a tree of trees.

4λxs ys → concat (map (λx → concat (map (λy → [(x, y)]) ys)) xs)

13

1 Declarative Programming

mergeTrees :: Tree (Tree a) → Tree a
mergeTrees Empty = Empty
mergeTrees (Leaf t) = t
mergeTrees (Fork l r) = Fork (mergeTrees l) (mergeTrees r)

Intuitively, this function takes a tree that stores other trees in its leaves and
just removes the Leaf constructors of the outer tree structure. So, the >>=
operation for trees replaces every leaf of a tree with the result of applying
the given function to the stored value.

Now we benefit from our choice to provide such a general type signature
for the function pair. We can apply the same function pair to trees instead
of lists to compute a tree of pairs instead of a list of pairs. For example, the
call pair (Fork (Leaf 0) (Leaf 1)) (Fork (Leaf True) (Leaf False)) yields the
following tree with four pairs.

Fork (Fork (Leaf (0, True))
(Leaf (0, False)))

(Fork (Leaf (1, True))
(Leaf (1, False)))

Like functors, monads allow programmers to define very general functions
that they can use on a variety of different data types. Monads are more
powerful than functors because the result of the >>= operation can have a
different structure than the argument. When using fmap the structure of the
result is always the same as the structure of the argument – at least if fmap
satisfies the functor laws.

The Monad type class also has a set of associated laws. The return function
must be a left- and right-identity for the >>= operator which needs to satisfy
an associative law.

return x >>= f ≡ f x
m >>= return ≡ m
(m >>= f) >>= g ≡ m >>= (λx → f x >>= g)

These laws ensure a consistent semantics of the do-notation and allow equa-
tional reasoning about monadic programs. The verification of the monad
laws for the list instance is left as an exercise for the reader. The proof for
the Tree instance is in Appendix A.2.

Summary
In this section we have seen different abstraction mechanisms of functional
programming languages that help programmers to write more modular and

14

1.1 Functional programming

reusable code. Type polymorphism (Section 1.1.1) allows to write functions
that can be applied to a variety of different types because they ignore parts
of their input. This feature is especially useful in combination with high-
er-order functions that allow to abstract from common programming pat-
terns to define custom control structures like, e.g., the map function on lists.
Lazy evaluation (Subsection 1.1.2) increases the modularity of algorithms
because demand driven evaluation often avoids storing intermediate results
which allows to compute with infinite data. With class-based overloading
(Subsection 1.1.3) programmers can implement one function that has differ-
ent behaviour on different data types such that code using these functions
can be applied in many different scenarios. We have see two examples for
type constructor classes, viz., functors and monads and started to explore
the generality of the code they allow to write. Finally, we have seen that
equational reasoning is a powerful tool to think about programs and their
correctness.

15

A Proofs
A.1 Functor laws for (a →) instance

This is a proof of the functor laws

fmap id ≡ id
fmap (f ◦ g) ≡ fmap f ◦ fmap g

for the Functor instance

instance Functor (a →) where
fmap = (◦)

The laws are a consequence of the fact that functions form a monoid under
composition with the identity element id.

fmap id h
≡ { definition of fmap }

id ◦ h
≡ { definition of (◦) }

λx → id (h x)
≡ { definition of id }

λx → h x
≡ { expansion }

h
≡ { definition of id }

id h

This proof makes use of the identity (λx → f x) ≡ f for every function f .
The second law is a bit more involved as it relies on associativity for function
composition.

fmap (f ◦ g) h
≡ { definition of fmap }

(f ◦ g) ◦ h
≡ { associativity of (◦) }

f ◦ (g ◦ h)

16

A.2 Monad laws for Tree instance

≡ { definition of fmap (twice) }
fmap f (fmap g h)

≡ { reduction }
(λx → fmap f (fmap g x)) h

≡ { definition of (◦) }
(fmap f ◦ fmap g) h

Now it is only left to verify that function composition is indeed associative:

(f ◦ g) ◦ h
≡ { definition of (◦) (twice) }

λx → (λy → f (g y)) (h x)
≡ { reduction }

λx → f (g (h x))
≡ { reduction }

λx → f ((λy → g (h y)) x)
≡ { definition of (◦) (twice) }

f ◦ (g ◦ h)

A.2 Monad laws for Tree instance

This is a proof of the monad laws

return x >>= f ≡ f x
m >>= return ≡ m
(m >>= f) >>= g ≡ m >>= (λx → f x >>= g)

for the Monad instance

instance Monad Tree where
return = Leaf
t >>= f = mergeTrees (fmap f t)

mergeTrees :: Tree (Tree a) → Tree a
mergeTrees Empty = Empty
mergeTrees (Leaf t) = t
mergeTrees (Fork l r) = Fork (mergeTrees l) (mergeTrees r)

for the data type

data Tree a = Empty | Leaf a | Fork (Tree a) (Tree a)

17

A Proofs

The left-identity law follows from the definitions of the functions return,
>>=, fmap, and mergeTrees.

return x >>= f
≡ { definitions of return and >>= }

mergeTrees (fmap f (Leaf x))
≡ { definition of fmap }

mergeTrees (Leaf (f x))
≡ { definition of mergeTrees }

f x

We prove the right-identity law by induction over the structure of m. The
Empty case follows from the observation that Empty >>= f ≡ Empty for every
function f , i.e., also for f ≡ return.

Empty >>= f
≡ { definition of >>= }

mergeTrees (fmap f Empty)
≡ { definition of fmap }

mergeTrees Empty
≡ { definition of mergeTrees }

Empty

The Leaf case follows from the left-identity law because return ≡ Leaf .

Leaf x >>= return
≡ { definition of return }

return x >>= return
≡ { first monad law }

return x
≡ { definition of return }

Leaf x

The Fork case makes use of the induction hypothesis and the observation
that Fork l r >>= f ≡ Fork (l >>= f) (r >>= f)

Fork l r >>= f
≡ { definition of >>= }

mergeTrees (fmap f (Fork l r))
≡ { definition of fmap }

mergeTrees (Fork (fmap f l) (fmap f r))
≡ { definition of mergeTrees }

18

A.2 Monad laws for Tree instance

Fork (mergeTrees (fmap f l)) (mergeTrees (fmap f r))
≡ { definition of >>= (twice) }

Fork (l >>= f) (r >>= f)

Now we can apply the induction hypothesis.

Fork l r >>= return
≡ { previous derivation }

Fork (l >>= return) (r >>= return)
≡ { induction hypothesis (twice) }

Fork l r

Finally we prove assiciativity of >>= by structural induction. The Empty case
follows from the above observation that Empty >>= f ≡ Empty for every
function f .

(Empty >>= f) >>= g
≡ { above observation for Empty (twice) }

Empty
≡ { above observation for Empty }

Empty >>= (λx → f x >>= g)

The Leaf case follows again from the first monad law.

(Leaf y >>= f) >>= g
≡ { definition of return }

(return y >>= f) >>= g
≡ { first monad law }

f y >>= g
≡ { first monad law }

return y >>= (λx → f x >>= g)
≡ { definition of return }

Leaf y >>= (λx → f x >>= g)

The Fork case uses the identity Fork l r >>= f ≡ Fork (l >>= f) (r >>= f) that
we proved above and the induction hypothesis.

(Fork l r >>= f) >>= g
≡ { property of >>= }

Fork (l >>= f) (r >>= f) >>= g
≡ { property pf >>= }

Fork ((l >>= f) >>= g) ((r >>= f) >>= g)
≡ { induction hypothesis }

19

A Proofs

Fork (l >>= (λx → f x >>= g)) (r >>= (λx → f x >>= g))
≡ { property of >>= }

Fork l r >>= (λx → f x >>= g)

This finishes the proof of the three monad laws for the Tree instance.

20

